
http://golang.org
Thursday, July 22, 2010

http://golang.org
http://golang.org

http://golang.org

Go
Rob Pike
Emerging Languages
OSCON
July 21, 2010

Thursday, July 22, 2010

http://golang.org
http://golang.org

Concurrency

2

Where did Go's concurrency model come from?

It's got a long history.

Thursday, July 22, 2010

Parallelism

3

In the late 1970s, multiprocessors were a research topic.

Programming multiprocessors seemed related to issues of
operating systems research, interrupt handling, I/O systems,
message passing, ...

Ideas in the air:
- semaphores (Dijkstra, 1965)
- monitors (Hoare, 1974)
- locks (mutexes)
- message passing

(Lauer & Needham 1979 showed that message-passing and
what we now call threads&locks are equivalent.)

Thursday, July 22, 2010

Communicating Sequential Processes (CSP)

4

Seminal paper by C.A.R. Hoare, CACM 1978.

A model programming language that promoted input, output as
fundamental elements of computing.

"Parallel composition of communicating sequential processes."

Communication is I/O.
Parallel composition is multiprocessing.
That's all you need!

More ideas in this paper than in any other 10 good papers you
are likely to find.

Thursday, July 22, 2010

Communicating Sequential Processes (CSP)

5

Mathematical, concise, elegant.

Generalization of Dijkstra's guarded commands, with ! for
sending and ? for receiving a message.

p!value sends value to process p
p?var receives value from p, stores in variable var
[A;B] runs A followed by B
[A||B] runs A in parallel with B (composition)
*[A] runs A repeatedly
[a ! A [] b ! B] guarded command
 (if a then A elif b then B fi, but in parallel)

Communication is synchronization.
Each command can succeed or fail.

Thursday, July 22, 2010

Coroutines

6

COPY:: *[c: character; west?c ! east!c]

DISASSEMBLE::
*[cardimage:(1..80)character; cardfile?cardimage !
 i:integer; i := 1;
 *[i≤80 ! X!cardimage(i); i := i+1]
 X!space]

ASSEMBLE:: lineimage(1..125)character;
i:integer; i := 1;
*[c:character; X?c !
 lineimage(i) := c;
 [i≤24 ! i := 1+1
 [] i=125 ! lineprinter!lineimage; i := 1
]];
[i=1 ! skip;
[] i>1 ! *[i≤125 ! lineimage(i) := space; i := i+1];
 lineprinter!lineimage]

[west::DISASSEMBLE||COPY||east::ASSEMBLE] # pipe!

Thursday, July 22, 2010

Ports and patterns

7

The "ports" used in communication are just single connections
to predefined processes - the names are process names.

Can write a prime sieve for 1000 primes but not N primes; a
matrix multiplier for 3x3 but not NxN, etc. (Arrays of
processes do the bookkeeping.)

Pattern matching to analyze/unpack messages:
[c?(x, y) ! A]

More general conditions:
[i≥100; c?(x, y) ! A]

Cannot use send as a guard.

Thursday, July 22, 2010

Recap

8

Parallel composition of independent processes

Communication synchronizes

No sharing of memory

Not threads and Not mutexes!

Now we come to a fork in the road.

Thursday, July 22, 2010

The Occam branch

9

Distinct sets of languages emerge from CSP.
One leads us to Occam, very close to basic CSP.

Thursday, July 22, 2010

Occam

10

Inmos, a hardware company, designed the Transputer, and
programmed it in Occam (1983).
Parallel architecture; nodes on the chip communicate with !?.
Ports correspond to hardware.
Language quite close to CSP (advised by Hoare).

ALT
 count1 < 100 & c1 ? data
 SEQ
 count1 := count1 + 1
 merged ! data
 count2 < 100 & c2 ? data
 SEQ
 count2 := count2 + 1
 merged ! data
 status ? request
 SEQ
 out ! count1
 out ! count2 -- (note white space for structure!)

Thursday, July 22, 2010

The Erlang branch

11

Another leads us to Erlang: networked, pattern-matched.

Thursday, July 22, 2010

Erlang

12

Developed at Ericsson (late 1980s). Took the functional side of
CSP and used "mailboxes". Processes use pattern matching to
unpack messages. Send is to a process ID.

ServerProcess = spawn(web, start_server, [Port, MaxConnections]),

RemoteProcess = spawn(RemoteNode, web, start_server, [Port, MaxConnections]),

ServerProcess ! {pause, 10},
 receive
 a_message -> do_something;
 {data, DataContent} -> handle(DataContent);
 {hello, Text} -> io:format("Got hello message: ~s", [Text]);
 {goodbye, Text} -> io:format("Got goodbye message: ~s", [Text])
 end.

Thursday, July 22, 2010

The Newsqueak/Limbo/Go branch

13

Another branch leads us to eventually to Go.
Here the focus is on channels.

Thursday, July 22, 2010

Squeak

14

Squeak* (Cardelli and Pike (1985)) was a toy language used
to demonstrate the use of concurrency to manage the input
streams to a user interface.

proc Mouse = DN? . M?p . moveTo!p . UP? . Mouse
proc Kbd(s) = K?c .
 if c==NewLine then typed!s . Kbd(emptyString)
 else Kbd(append(s, c))
 fi
proc Text(p) =
 < moveTo?p . Text(p)
 :: typed?s . {drawString(s, p)? . Text(p) >

type = Mouse & Kbd(emptyString) & Text(nullPt)

*unrelated to the much later Squeak Smalltalk implementation

Thursday, July 22, 2010

Newsqueak

15

Newsqueak (1989) looked syntactically like C but was
applicative and concurrent. Idea: a research language to
make the concurrency ideas of Squeak practical.
Had lambdas called progs, a select statement
corresponding to the CSP alternation, but guards must be
communication only (sends work).

Long-lived syntactic inventions:
Communication operator is left arrow <-. Information flows
in direction of arrow. Also <-c (receive) is an expression.

Introduces := for "declare and initialize":

 x: int = 1
 x := 1

Thursday, July 22, 2010

Prime sieve

16

counter := prog(c:chan of int) {
 i:int; for(i = 2;;) c<-=i++;
};
filter := prog(prime:int, listen,send:chan of int) {
 i:int; for(i=0 ;;) if((i=<-listen)%prime) send<-=i;
};
sieve := prog() of chan of int {
 c := mk(chan of int);
 begin counter(c);
 prime := mk(chan of int);
 begin prog(){
 p: int;
 newc: chan of int;
 for(;;){
 prime<- = p = <-c;
 newc = mk();
 begin filter(p, c, newc);
 c = newc;
 }
 }();
 become prime;
};

Thursday, July 22, 2010

Channels as first-class values

17

Unlike in the other languages, Newsqueak had the concept
of channels as first-class values in a CSP-like model.

In Newsqueak and its descendants, can send a channel on a
channel.

c: chan of int;
cc: chan of chan of int;

cc<- = c; # Sends channel c on channel cc.
 # Recipient can then use c.

Makes multiplexers easy to construct. I can send you the
channel to use to reply to me. It's a capability, like a file
descriptor: "I grant you permission to communicate with me."
(Erlang process IDs can grant ability to send but not receive;
Newsqueak channels are fully symmetric.)

Thursday, July 22, 2010

Alef

18

Early 1990s: Alef (Phil Winterbottom) grafted the concurrency
and communications model of Newsqueak onto a more
traditional compiled C-like language.

Problem: with C's memory model in a concurrent world, hard
to know when to free items.

All the other languages in this talk are garbage-collected,
which is essential to easy concurrent programming.

Thursday, July 22, 2010

Limbo

19

Limbo (Dorward, Pike, Winterbottom 1996) was a VM
language (contemporaneous with Java) that was closer to
Newsqueak in overall design.

Used as an embedded language in communication products.

As in Newsqueak and Alef, the key idea is that channels are
first-class.

Thursday, July 22, 2010

Go

20

Go (Griesemer, Pike, Thompson 2009) is a compiled, object-
oriented language with a concurrent runtime.

Makes it easy to use the tools of CSP efficiently, in concert
with regular systems code. Channels are first class! (So are
functions, which can run in parallel.)

Compilation makes execution efficient (e.g., cryptographic
calculations are quick).

The runtime makes concurrency easy (stacks,
communication, scheduling, etc. are all automatic).

Garbage-collected, naturally.

Best of all worlds!

Thursday, July 22, 2010

A card reassembly example in Go

21

func copy(west, east chan byte) { for { east <- <-west } }

func assemble(X chan byte, printer chan []byte) {
	 lineimage := make([]byte, 125)
	 for i := 0;; {
	 	 lineimage[i] = <-X
	 	 if i < 124 { i++ } else { printer <- lineimage; i = 0 }
	 }
}

func disassemble(cardfile chan []byte, X chan byte) {
	 for {
 cardimage := <-cardfile
	 	 i := 0
	 	 for i < len(cardimage) { X <- cardimage[i]; i++ }
	 	 for i < 80 { X <- ' '; i++ }
	 }
}

go disassemble(cardreader, chars1)
go copy(chars1, chars2)
go assemble(chars2, lineprinter)

Thursday, July 22, 2010

Summary

22

Go's concurrency structures have a long history dating back
to a branch in the CSP family tree in the 1980s. Multiple real
languages have built on CSP's ideas.

Channels as first-class values are the distinguishing feature
of the Go branch.

Go pulls together elements from several predecessors,
coupling high-level concurrency operations with a compiled
object-oriented language.

To use concurrency gracefully, language must have garbage
collection and automatic stack management.

Thursday, July 22, 2010

Go

23

There's much more to Go than concurrency!

Two more OSCON talks tomorrow about it.

In the meantime, see

http://golang.org

for lots more information.

Thursday, July 22, 2010

http://golang.org
http://golang.org

Read the 1978 CSP paper

24

It is deep and wise

Thursday, July 22, 2010

Quotes from the CSP paper

25

[Processes] may not communicate with each other by
updating global variables.

In parallel programming coroutines appear as a more
fundamental program structure than subroutines, which can be
regarded as a special case.

[A coroutine] may use input commands to achieve the effect of
"multiple entry points" ... [and be] used like a SIMULA class
instance as a concrete representation for abstract data.

Thursday, July 22, 2010

http://golang.org
Thursday, July 22, 2010

http://golang.org
http://golang.org

http://golang.org

Go
Rob Pike
Emerging Languages
OSCON
July 21, 2010

Thursday, July 22, 2010

http://golang.org
http://golang.org

